

David Nnaji, EIT

Education

Colorado State University (CSU) M.S. Systems Engineering '21

The University of Tulsa (TU) B.S. Mechanical Engineering `19

ţĊ

Engineering Projects

Student Cyber Truck Experience 2019 NASA Robotic Mining Competition NASA Jet Propulsion Laboratory Intern

Current Project

Semi-Trailer Temperature Monitoring System

A scalable system capable of securely monitoring tire and brake temperature across trailers and dollies over heavy-duty vehicle networks as an early warning indicator for drivers.

Motivation

- For large trucks involved in crashes, tire and brake failure constitutes the majority of vehicle-related factors and violations recorded by the Federal Motor Carrier Safety Administration (FMCSA).
- Heavy vehicle drivers are at a disadvantage because they may not detect the symptoms of tire and brake failure such as vibration, noise, and reduced mileage that a passenger car driver would experience.
- Trailer and converter dollies are especially difficult

.

Approach

Semi-Trailer Temperature Monitoring System Topography

J1939 Line

Power Line

Colorado State University

Approach

Semi-Trailer Temperature Monitoring System Topography

General Inform	ation	Message Free	quency Contro	ol Units
Date:		0 10ms		
2019-10-09 15:53		 1000ms 500ms 60000ms 		
Vehicle:				
-				○ °C
Driver:				○ °F
David Nnaji				
VIN:		◯ 360000ms		
-				
Quick Connect		Maximu	ım Temperatu	ire Control
Serial Port: Baudrate:		Current Value		
COM45	9600			
Connect		Max Te	Max Temperature	
				°C
Disconnect			Set	
Dealtine Data				
Realume Data -				
Kaw Serial:				
	Start	Stop		

Security

The three attributes of a secure heavy vehicle network system are authentication, integrity, and nonrepudiation [2]. The methods that are being investigated to satisfy these attributes are

- Cipher-based Message Authentication Code (CMAC)
- One-way hash of message ID and data

Integrity Nonrepudiation

Thank you

